In the grip of a pandemic

The prevalence of allergic diseases, such as food allergy, atopic eczema, allergic rhinitis and asthma, are rising dramatically worldwide in both developed and developing countries, affecting 30–40% of the population. The global rise of food allergy is particularly problematic in infants, who are bearing the greatest burden of this rising trend.1

Gut microbiota and the immune system

Microbial interactions are important drivers in the maturation of the immune system, with 70-80% of immune cells residing in the gut.2 The gut microbiota provides many useful functions including protection from harmful pathogens, strengthening the body’s immune defenses and performing vital metabolic tasks.3 The immune system develops during the first 1000 days of life, developing and maintaining a balance between the gut microbiota and the immune system is essential to maintain health, especially in infants and children.4 The development of allergic diseases is influenced by genetic, environmental factors and transmission from the mother to the fetus. These play a critical role in the development of the immune system and the gut microbiota.

CMA is one of the most common childhood food allergies affecting up to 5% of the population.5 Although most infants with CMA outgrow their allergies by school age, an increasing number may have persistent symptoms or develop other allergic conditions over time, also referred to as the allergic march.6,7

Microbial interactions are important drivers in the maturation of the immune system, with 70-80% of immune cells residing in the gut.2 The gut microbiota provides many useful functions including protection from harmful pathogens, strengthening the body’s immune defenses and performing vital metabolic tasks.3 The immune system develops during the first 1000 days of life, developing and maintaining a balance between the gut microbiota and the immune system is essential to maintain health, especially in infants and children.4 The development of allergic diseases is influenced by genetic, environmental factors and transmission from the mother to the fetus. These play a critical role in the development of the immune system and the gut microbiota.

The key for allergy management today is targeted exposure in a controlled microbial environment.

Factors which influence gut microbiota in early life8-10

• Gestational age
• The maternal environment
• Delivery mode (vaginal or caesarean)
• Nutrition (breast vs. formula feeding)
• Use of antibiotics
• Diet
• Air pollution

The role of the gut microbiota on allergy development in early life

Nutricia presents the first in a three-part series of discussions around allergies in early life. These articles will focus on the important role of gut microbiota in early life and the role of pre- and probiotics in the prevention and dietary management of cow’s milk allergy (CMA).

The gut of a healthy breast-fed infant is typically dominated by bacteria of the Bifidobacteria species. These species are fed transmitted from the mother during birth and via the breast milk.1,11 In addition to bacteria, breast milk also contains non-digestible oligosaccharides that are readily consumed by these same species. These species influence the gut microbiota thereby aiming to prevent the microbiota thereby aiming to prevent the development of other allergies.

Future of allergy management for CMA patients

The mainstay of dietary management of CMA infants is the avoidance of all cow’s milk and cow’s milk protein-based infant formulas. Breast feeding is the gold standard for infant nutrition however it may not always be possible for all CMA infants. Therefore healthcare professionals may prescribe specialised infant formulas based on hydrolysed protein or amino acids for dietary management.

Due to the recognition that there is gut microbiota dysbiosis in allergy, there is a compelling rationale for the addition of both pre- and probiotic ingredients to formula for infants with CMA. A blend of pre- and probiotics is termed synbiotics.

Nutritional support for infants with CMA

Nutritional support is an essential part of the clinical management of infants with CMA.

CMA can present with a variety of symptoms, generally affecting the respiratory tract, the skin and the GI tract. It is classified according to the different immune responses, which include IgE-mediated (immediate) or cell mediated (non-IgE mediated (delayed) reactions) and is associated with the development of other allergies.5

Recognising that breast feeding is not always possible, ways to support the development of the microbiota of formula-fed infants have been sought, resulting in the addition of prebiotic oligosaccharides and specific probiotic strains, alone or in combination, in several commercially available infant formulas.11,12

A growing amount of clinical evidence shows that pre- and probiotics can have beneficial effects in infants at risk of, or living with allergies. Pre- and probiotics aim to influence the status of the tissue directly, or indirectly, via the gut microbiota thereby aiming to prevent the onset of an allergic disease.15,16

For more information visit www.nutriciaresearch.com/allergy/